Multiple solutions for a Neumann system involving subquadratic nonlinearities
نویسندگان
چکیده
منابع مشابه
MULTIPLE SOLUTIONS FOR A CLASS OF p(x)-LAPLACIAN PROBLEMS INVOLVING CONCAVE-CONVEX NONLINEARITIES
Since A. Ambrosetti and P.H. Rabinowitz proposed the mountain pass theorem in 1973 (see [1]), critical point theory has become one of the main tools for finding solutions to elliptic problems of variational type. Especially, elliptic problem (1.2) has been intensively studied for many years. One of the very important hypotheses usually imposed on the nonlinearities is the following Ambrosetti-R...
متن کاملMultiple solutions for a perturbed Navier boundary value problem involving the $p$-biharmonic
The aim of this article is to establish the existence of at least three solutions for a perturbed $p$-biharmonic equation depending on two real parameters. The approach is based on variational methods.
متن کاملMultiple Positive Solutions for a Quasilinear Elliptic System Involving Concave-Convex Nonlinearities and Sign-Changing Weight Functions
Let Ω 0 be an-open bounded domain in R N ≥ 3 and p∗ pN/ N − p . We consider the following quasilinear elliptic system of two equations inW 0 Ω ×W 1,p 0 Ω : −Δpu λf x |u|q−2u α/ α β h x |u|α−2u|v|β,−Δpv μg x |v|q−2v β/ α β h x |u|α|v|β−2v, where λ, μ > 0, Δp denotes the p-Laplacian operator, 1 ≤ q < p < N,α, β > 1 satisfy p < α β ≤ p∗, and f, g, h are continuous functions on Ω which are somewher...
متن کاملMultiple Positive Solutions for Kirchhoff Type Problems Involving Concave and Convex Nonlinearities in R
In this article, we consider the multiplicity of positive solutions for a class of Kirchhoff type problems with concave and convex nonlinearities. Under appropriate assumptions, we prove that the problem has at least two positive solutions, moreover, one of which is a positive ground state solution. Our approach is mainly based on the Nehari manifold, Ekeland variational principle and the theor...
متن کاملMULTIPLE SOLUTIONS OF A p(x)-LAPLACIAN EQUATION INVOLVING CRITICAL NONLINEARITIES
In this paper, we consider the existence of multiple solutions for the following p(x)-Laplacian equations with critical Sobolev growth conditions { −div(|∇u|p(x)−2 ∇u) + |u|p(x)−2 u = f(x, u) in Ω, u = 0 on ∂Ω. We show the existence of infinitely many pairs of solutions by applying the Fountain Theorem and the Dual Fountain Theorem respectively. We also present a variant of the concentration-co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nonlinear Analysis: Theory, Methods & Applications
سال: 2011
ISSN: 0362-546X
DOI: 10.1016/j.na.2010.11.018